skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Watanabe, Shohei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Wildfire smoke covers entire continents, depositing aerosols and reducing solar radiation fluxes to millions of freshwater ecosystems, yet little is known about impacts on lakes. Here, we quantified trends in the spatial extent of smoke cover in California, USA, and assessed responses of gross primary production and ecosystem respiration to smoke in 10 lakes spanning a gradient in water clarity and nutrient concentrations. From 2006 − 2022, the maximum extent of medium or high-density smoke occurring between June-October increased by 300,000 km2. In the three smokiest years (2018, 2020, 2021), lakes experienced 23 − 45 medium or high-density smoke days, characterized by 20% lower shortwave radiation fluxes and five-fold higher atmospheric fine particulate matter concentrations. Ecosystem respiration generally declined during smoke cover, especially in low-nutrient, cold lakes, whereas responses of primary production were more variable. Lake attributes and seasonal timing of wildfires will mediate the effects of smoke on lakes. 
    more » « less
  2. Abstract One of the most important physical characteristics driving lifecycle events in lakes is stratification. Already subtle variations in the timing of stratification onset and break-up (phenology) are known to have major ecological effects, mainly by determining the availability of light, nutrients, carbon and oxygen to organisms. Despite its ecological importance, historic and future global changes in stratification phenology are unknown. Here, we used a lake-climate model ensemble and long-term observational data, to investigate changes in lake stratification phenology across the Northern Hemisphere from 1901 to 2099. Under the high-greenhouse-gas-emission scenario, stratification will begin 22.0 ± 7.0 days earlier and end 11.3 ± 4.7 days later by the end of this century. It is very likely that this 33.3 ± 11.7 day prolongation in stratification will accelerate lake deoxygenation with subsequent effects on nutrient mineralization and phosphorus release from lake sediments. Further misalignment of lifecycle events, with possible irreversible changes for lake ecosystems, is also likely. 
    more » « less
  3. Dunn, Robert J.; Stanitski, Diane M.; Gobron, Nadine; Willett, Kate M. (Ed.)